

Núcleo de Informação e Coordenação do **Ponto BR**

nichr egibr

Comitê Gestor da **Internet no Brasil**

PROGRAMA POR UMA INTERNET MAIS SEGURA

A segurança da sua rede depende da segurança de todos

Gilberto Zorello | gzorello@nic.br

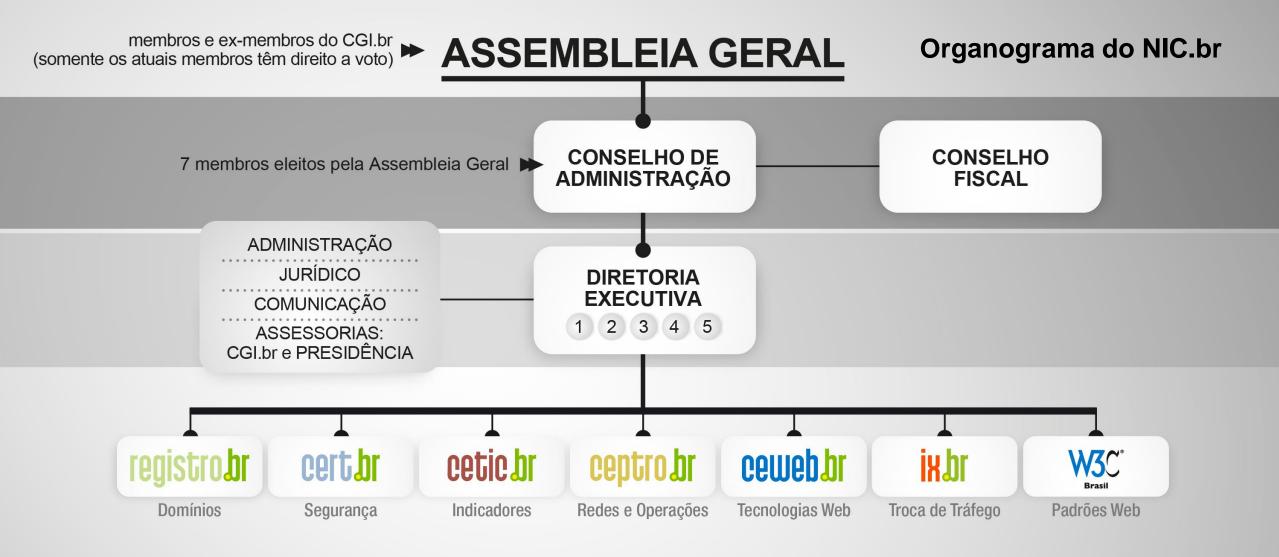
Nossa **Agenda**

• CGI.br e NIC.br

Panorama atual

- Ataques à infraestrutura mais frequentes
- Programa por uma Internet mais segura

123456789 GOVERNO

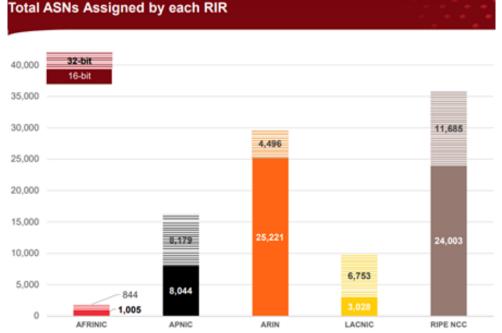

10 11 12 13 14 15 16 17 18 19 20 21 SOCIEDADE CIVIL

Representantes do Governo:

- 1 Ministério da Ciência, Tecnologia e Inovação (coordenador)
- 2 Casa Civil da Presidência da República
- 3 Ministério das Comunicações
- 4 Ministério da Defesa
- 5 Ministério do Desenvolvimento, Indústria e Comércio Exterior
- 6 Ministério do Planejamento, Orçamento e Gestão
- 7 Agência Nacional de Telecomunicações
- 8 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- 9 Conselho Nacional de Secretários Estaduais para Assuntos de Ciência e Tecnologia

Representantes da Sociedade Civil:

- 10 Notório saber em assunto da Internet
- 11 a 14 Representantes do setor empresarial
 - provedores de acesso e conteúdo da Internet
 - provedores de infra-estrutura de telecomunicações
 - indústria de bens de informática, de bens de telecomunicações e de software
 - setor empresarial usuário
- 15 a 18 Representantes do terceiro setor
- 19 a 21 Representantes da comunidade científica e tecnológica

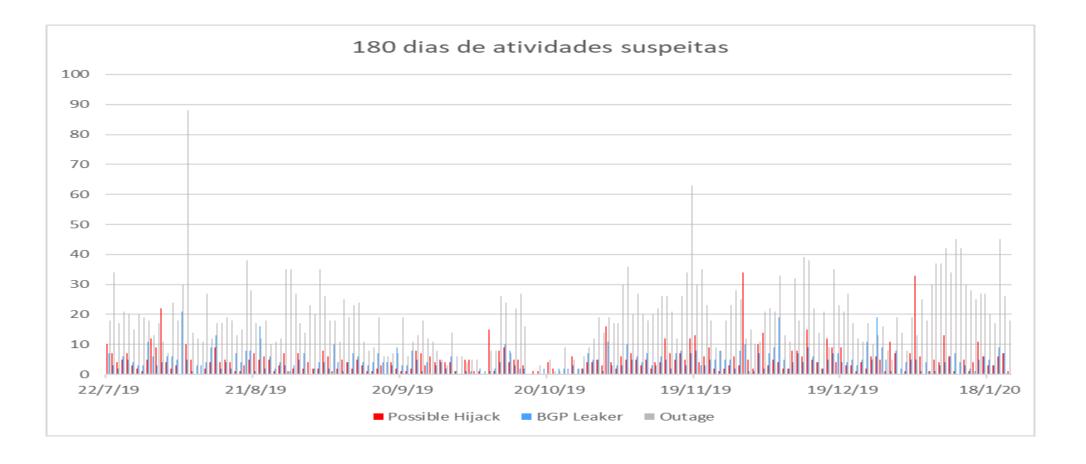

- 1 Diretor presidente
- 2 Diretor administrativo e financeiro
- 3 Diretor de serviços e de tecnologia
- 4 Diretor de projetos especiais e de desenvolvimento
- 5 Diretor de assessoria às atividades do CGI.br

Panorama atual

Segurança e estabilidade da Internet Estrutura da Internet atual

A Internet funciona com base na cooperação entre Sistemas Autônomos

- É uma "rede de redes"
- São mais de 93.000 redes diferentes, sob gestões técnicas independentes
- A estrutura de roteamento BGP funciona com base em cooperação e confiança
- O BGP não tem validação dos dados
- Resultado: não há um dia em que não ocorram incidentes de Segurança na Internet

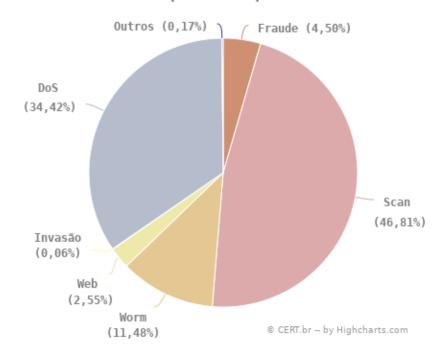


O BGP não tem Validação para os dados

Segurança e estabilidade da Internet Nenhum dia sem um incidente

Fonte: https://bgpstream.com/

Segurança e estabilidade da Internet Panorama Atual

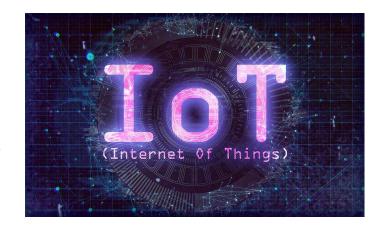

Ataques à infraestrutura e aos serviços disponíveis na Internet estão cada vez mais comuns

O NIC.br analisa a tendência dos ataques com dados obtidos por:

- Incidentes de segurança reportados ao CERT.br
- Medições em "honeypots" distribuídos na Internet
- Medições no IX

Incidentes Reportados ao CERT.br Janeiro a Dezembro de 2019

Tipos de ataque

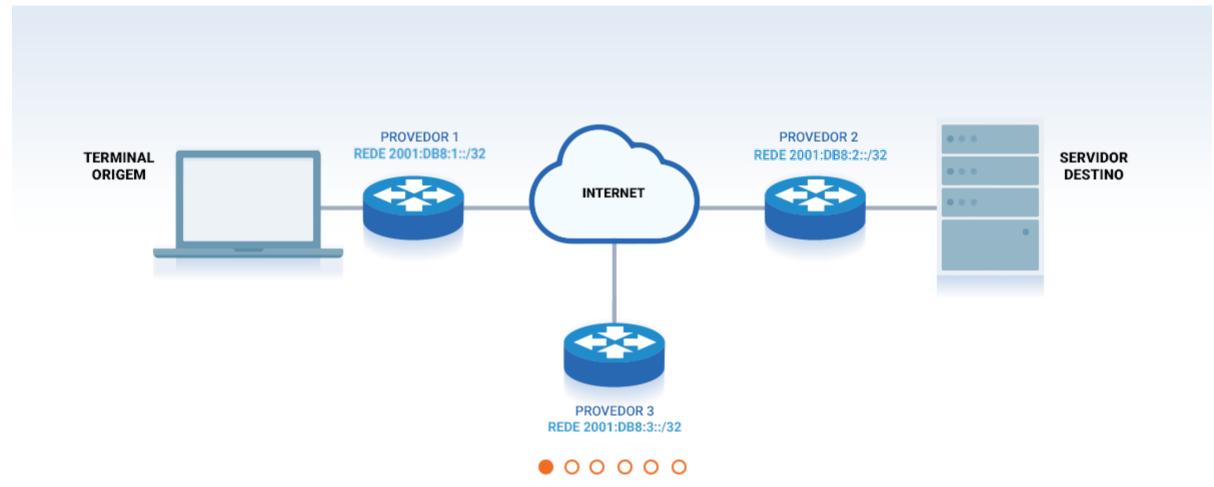

https://www.cert.br/stats/incidentes/2019-jan-dec/tipos-ataque.html

Constata-se um ritmo crescente de notificações de varreduras e DoS [6]

mmm

Segurança e estabilidade da Internet IoT – Internet of Things

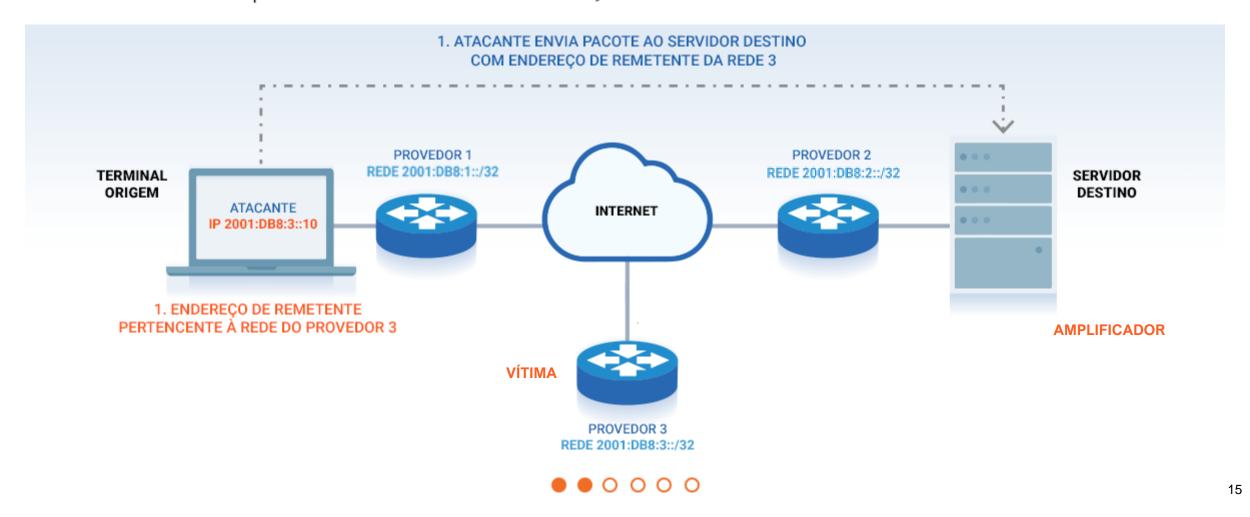
- Segundo a Gartner é esperado que 20 bilhões de coisas estejam conectadas à Internet em 2020
- Segundo a Cisco é esperado que 500 bilhões de dispositivos estejam conectados à Internet em 2030



- Nossas redes estão preparadas para esta tecnologia?
- Como estamos em relação à segurança ?

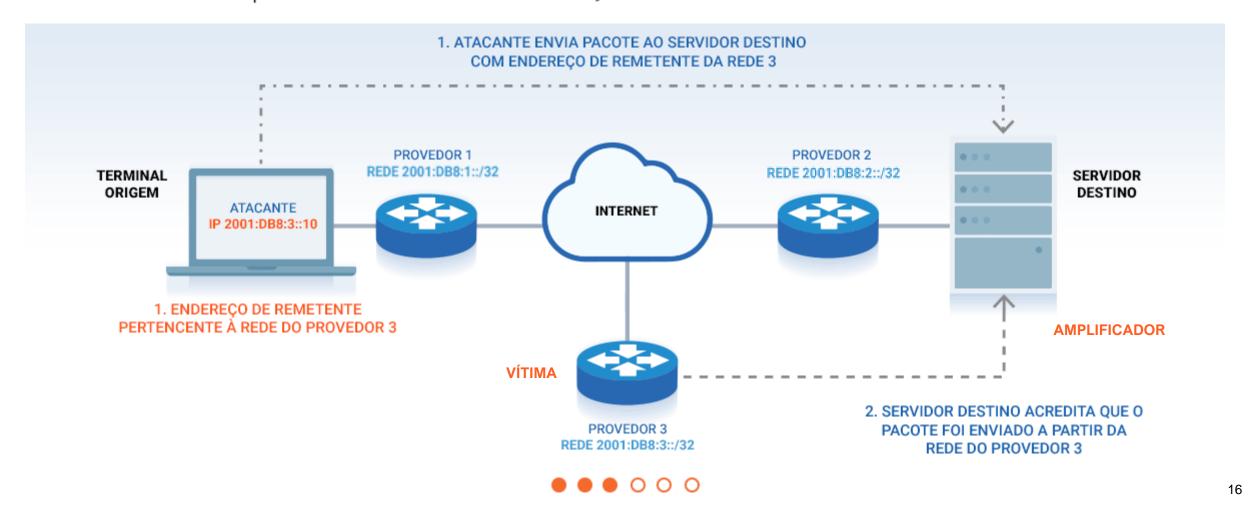
Ataques mais frequentes na infraestrutura da rede

Ataque DoS por reflexão


Topologia de rede sem filtros antispoofing [4]

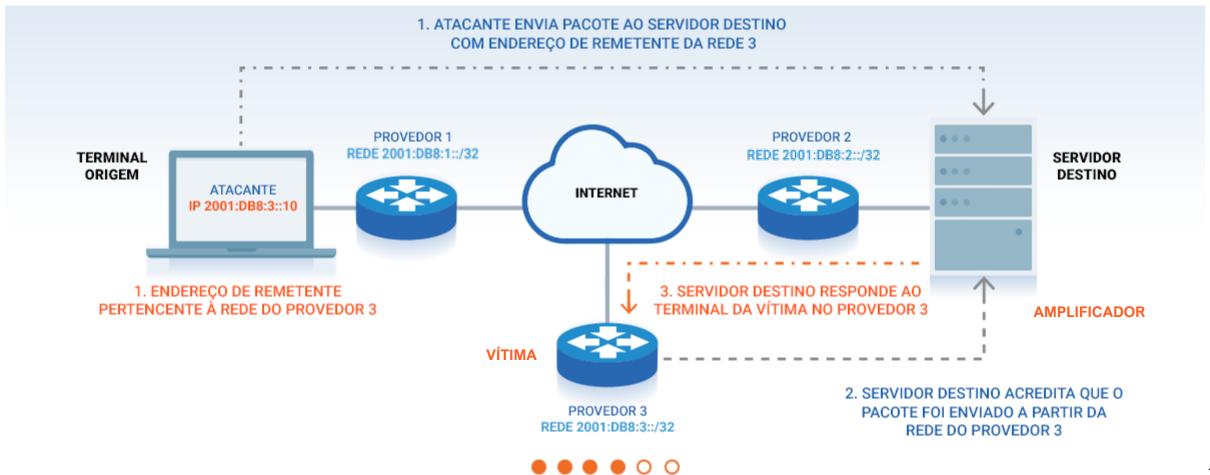
սսսմա

Ataque DoS por reflexão


Ataque DoS utilizando endereço de remetente forjado (Spoofing) [4]

ԱԱԱՄԱ

Ataque DoS por reflexão


Ataque DoS utilizando endereço de remetente forjado (Spoofing) [4]

ԱԱԱՄԱ

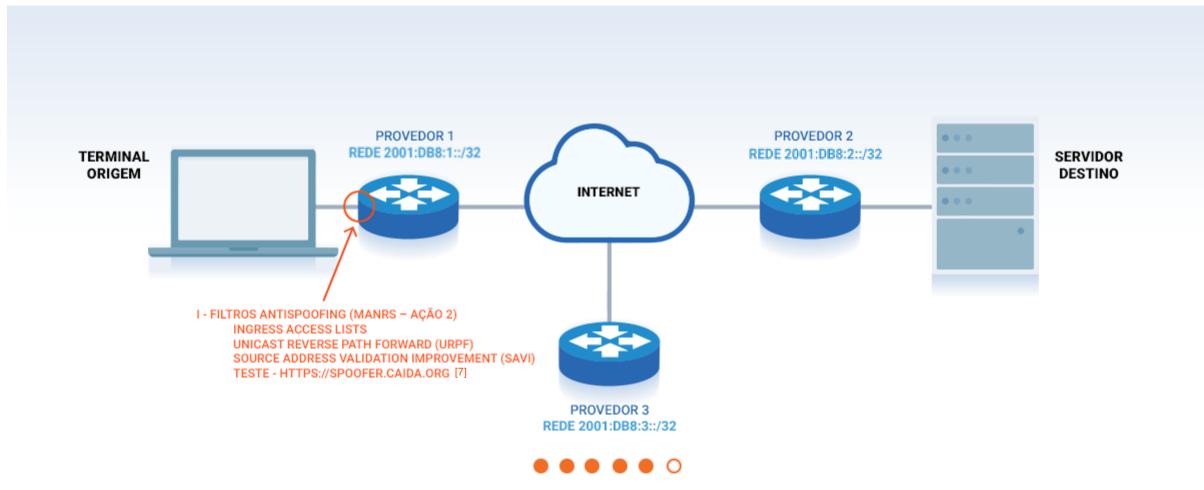
Ataque DoS por reflexão

Ataque DoS utilizando endereço de remetente forjado (Spoofing) [4]

uuuuu

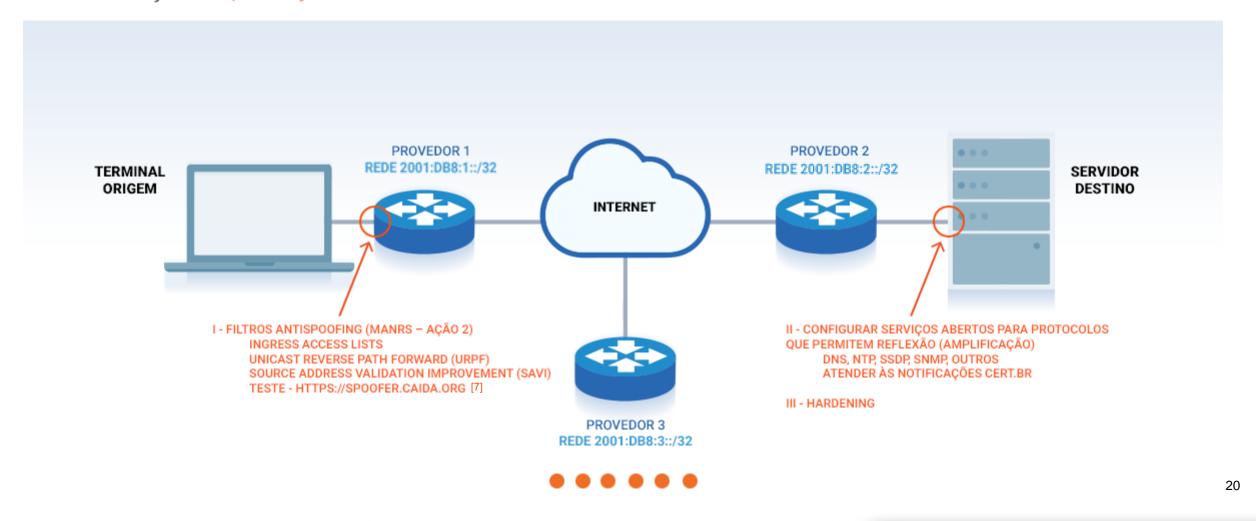
Servidor Destino

Os protocolos usados nos ataques fazem parte legítima da infraestrutura pública da Internet, porém em alguns equipamentos, como CPEs, são instalados por padrão e abusados por atacantes.


սսսու

- DNS (53 / UDP): fator de amplificação de 28 até 54 vezes
- NTP (123 / UDP): fator de amplificação de 556.9 vezes
- SNMPv2 (161 / UDP): fator de amplificação de 6.3 vezes
- NetBIOS (137–139 / UDP): fator de amplificação de 3.8 vezes
- SSDP (1900 / UDP): fator de amplificação de 30.8 vezes
- CHARGEN (19 / UDP): fator de amplificação de 358.8 vezes

Ataque DoS por reflexão


Solução: Aplicação de filtros antispoofing BCP38 [4]

սսսմա

Ataque DoS por reflexão

Solução: Aplicação de filtros antispoofing, configuração de serviços e Hardening [4]

uuuuu

Ataques DDoS – Distributed Deny of Service

Principais características dos ataques DDoS:

- Aumentou de patamar a partir de 2014
- O reporte de incidentes recebidos pelo CERT.br sobre computadores que participaram de ataques DDoS cresceu 90% em relação ao ano anterior

սսսսս

- 300 Gbps é o "normal", até 1 Tbps contra alguns alvos
- Tipos mais frequentes:
 - Botnets IoT, ataques do tipo UDP flood
 - Ataque DDoS por reflexão com amplificação de tráfego

Fonte: CERT.br [13]

Ataques DDoS – Distributed Deny of Service

Serviços mais abusados para ataques de amplificação no Brasil:

• SNMP (161/UDP), DNS (53/UDP), NTP (123/UDP)

Principais malwares por trás das botnets responsáveis por ataques DDoS:

Mirai, BASHLITE e respectivas variantes

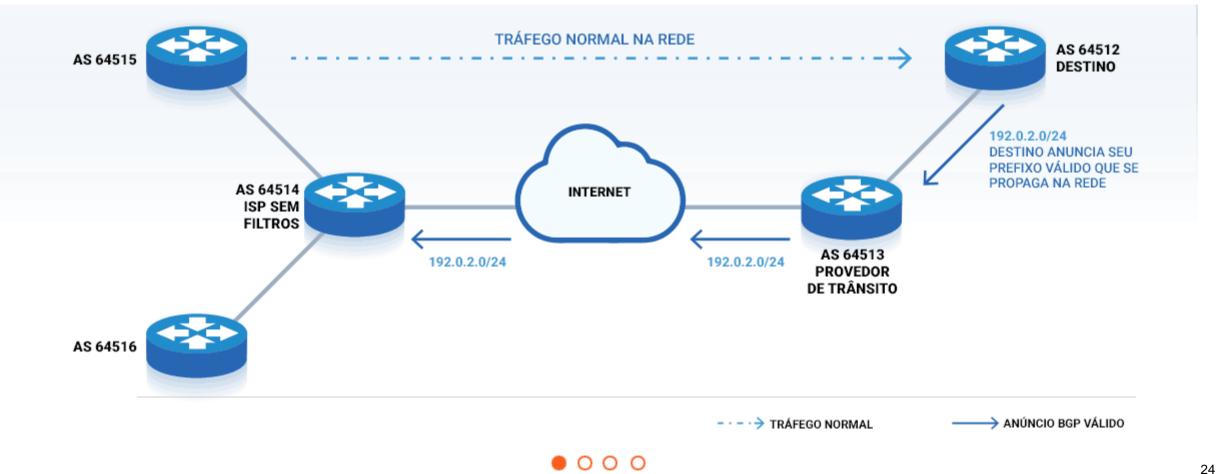
Dispositivos mais utilizados nos ataques utilizando botnets:

- Modens e roteadores de banda larga mal configurados com serviços abertos
- DVR de câmeras de segurança e câmeras IP
- TVs conectadas e caixas de TV via Internet
- Dispositivos IoT

Ações de Hardening

Para proteger suas infraestruturas, os operadores das redes devem adotar medidas para **analisar suas vulnerabilidades**, **mapear as ameaças**, **mitigar ou minimizar os riscos** e **aplicar medidas corretivas**

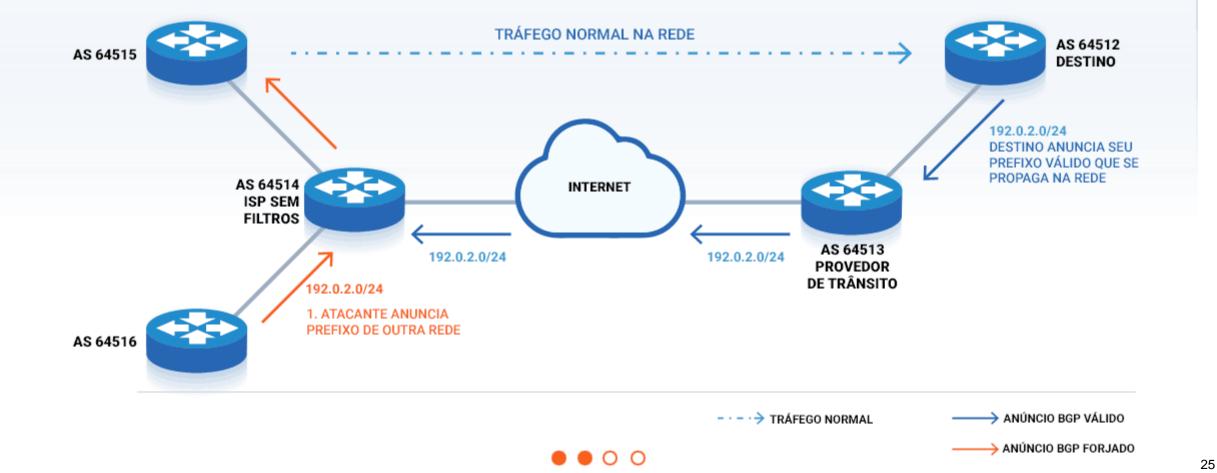
- Autenticação
 - Usuário, contas, senhas
- Autorização
 - Permissão de acesso
- Acesso
 - Protocolo seguro, criptografado
 - Mudar porta padrão, log, interface específica para configuração
 - Logout forçado, Port Knocking


- Sistema
 - Desative interfaces e serviços não utilizados
 - Manter os sistemas e equipamentos atualizados
- Configurações

mmm

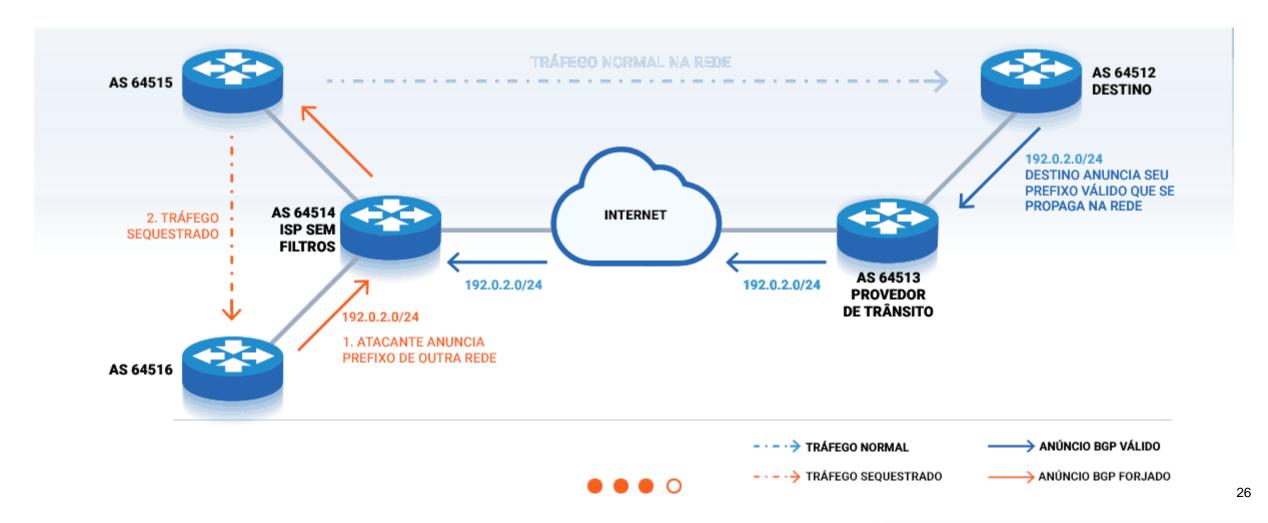
- Backup seguro, script de configuração
- Registros e Auditoria
 - Nível criticidade, armazenado em local seguro, hora correta (NTP)
 - Registro de ações

Ataque por Sequestro de Prefixos (Hijacking)


Topologia de rede sem filtros de anúncios

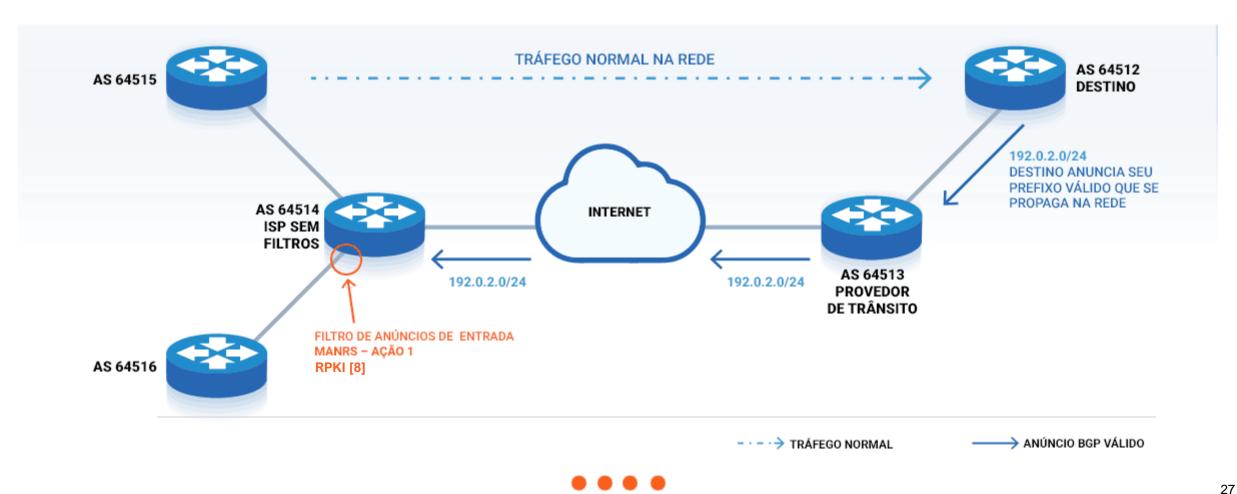
ԱԱԱՄԱ

Ataque por Sequestro de Prefixos (Hijacking)


Topologia de rede sem filtros de anúncios

սսսմս

Ataque por Sequestro de Prefixos (Hijacking)


Topologia de rede sem filtros de anúncios

սսսմս

Ataque por Sequestro de Prefixos (Hijacking)

Solução: Filtro de anúncios de entrada (clientes) - MANRS - Ação 1

սսսու

BGP Hijacking e Leak

- Anúncio de prefixos não autorizados
 - "Sequestro do Prefixo"
- Motivos:
 - Erro de configuração
 - Fat Finger
 - Proposital

Fonte: CEPTRO.br

RPKI → Certificado de chaves públicas para Recuros Internet (Resource Public Key Infrastructure)

- Permite a validação de anúncios de rotas via protocolo BGP pela emissão de Certificados Digitais de Chaves Públicas (PKI) associados às alocações de blocos de endereços IP e ASNs
- As empresas que recebem alocações demonstram que são os reais titulares dos recursos → melhora a segurança dos anúncios
- Faz uso de Certificados Digitais e de uma cadeia de certificação para validar as ROAs (Route Origin Authorization)
- As ROAs possuem uma lista prefixos e um ASN autorizado a gerar anúncios
- Este objeto é assinado digitalmente com a chave privada associada à chave pública do Certificado Digital → disponível publicamente

- RPKI → Certificado de chaves públicas para Recuros Internet (Resource Public Key Infrastructure)
- A segurança do sistema de rotas é garantida com o uso dos sistemas de validação que verificam se para uma determinada rota para um bloco IP há uma ROA que indique permissão do anúncio
- A validação de uma ROA é feita a partir de uma verificação criptográfica
- O Registro.br adotou a operação no modo delegado
- Mais detalhes sobre o sistema RPKI e passo a passo para implementação e ativação: https://registro.br/rpki [8] [9]
- Teste RPKI a partir de sua rede: https://sg-pub.ripe.net/jasper/rpki-web-test/

RPKI → Certificado de chaves públicas para Recuros Internet (Resource Public Key Infrastructure)

O que eu preciso:

- Software de CA (Certificate Authority)
 - Krill NLnet Labs, rpkid Dragon Reserch Labs
- Servidor de publicação
 - Servidor próprio
 - Servidor de terceiros (NIC.br)
- Software do validador
 - Routinator NLnet Labs, Dragon Research toolkit
- Roteador com suporte a validação de origem
 - Juniper, Cisco, Nokia, Software (BIRD, OpenBGPD, FRRouting, GoBGP)

Krill

Mutually Agreed Norms for Routing Security

Saiba mais em:

<u>http://manrs.org</u> (site completo do MANRS em inglês)

http://bcp.nic.br (recomendação do MANRS em português)

սուսու

Como Resolver os problemas

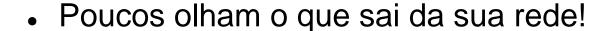
Todos devem implementar estas recomendações:

 Garantir que seus anúncios BGP sejam de seus próprios blocos IP e de seus clientes: definição de políticas de roteamento e implantação de filtros (RPKI) [8]

- Dificulta sequestro de blocos IP e redirecionamento de tráfego.
- 2. Garantir que os IP de origem que saem da rede não sejam falsificados: antispoofing [3] [6]
 - Impede que os computadores infectados de seus usuários iniciem ataques de amplificação.
- 3. Garantir que seus contatos estejam atualizados e acessíveis por terceiros de maneira global: Whois do Registro.br, PeeringDB e Site da Empresa
 - Permite que equipes de segurança de outras redes te avisem sobre problemas que detectam na sua rede.

սսսմա

- 4. Publicar suas políticas de roteamento em bases de dados externas: IRR (RADb, TC, NTTCOM) e RPKI [8]
 - Facilita a validação de roteamento em escala global.


Programa por uma Internet mais segura

uuuuuu

Programa por uma Internet mais Segura Problemas de segurança

- Todos tentam proteger sua própria rede. Olham apenas o que está entrando!
 - Isso é caro! Requer equipamentos e configurações complexas! Não tem resolvido!

Isso é simples. Fácil. Barato.

Programa por uma Internet mais Segura Problemas de segurança

- A falta de preocupação com a segurança das redes pode gerar dor de cabeça sem fim.
- As redes mal configuradas podem ser utilizadas para a geração de ataques a outras redes, DDoS, sequestro de prefixos (hijacking) e vazamento de rotas (leak).
- Seus recursos são comprometidos: links de conexão com a Internet e equipamentos.
- Além de levar o nome da empresa a ser envolvido em ataques devido às suas vulnerabilidades.
- Um único problema pode manchar a reputação de uma companhia frente a clientes e potenciais parceiros.
- A adoção de procedimentos de segurança em suas redes adiciona um valor competitivo num mercado em que todos oferecem serviços semelhantes e direcionados ao preço. Mostra também competência e comprometimento com a segurança de seus serviços.
- "Quando o cliente adquire um serviço de rede, ele espera que essa ponte entre a casa dele e a Internet seja segura".

սսսսս

Programa por uma Internet mais Segura Iniciativa

Lançado pelo CGI.br e NIC.br

Painel do IX Fórum 11 em dez/17 [1]

Apoio: Internet Society, Abrint, Abranet, SindiTelebrasil

Objetivo - atuar em apoio à comunidade técnica da Internet para:

- Redução de ataques de Negação de Serviço originados nas redes brasileiras
- Reduzir Sequestro de Prefixos, Vazamento de Rotas e Falsificação de IP de Origem
- Redução das vulnerabilidades e falhas de configuração presentes nos elementos da rede

սուսու

- Aproximar as diferentes equipes responsáveis pela segurança e estabilidade da rede
- Criar uma cultura de segurança

Programa por uma Internet mais Segura Plano de Ação

Para solucionar os problemas de segurança, as ações devem ser realizadas pelos operadores dos Sistemas Autônomos, com apoio do NIC.br

Ações coordenadas a serem executadas pelo NIC.br:

- Conscientização por meio de palestras, cursos e treinamentos
- Criação de materiais didáticos e boas práticas [11]
- Interação com Associações de Provedores e seus afiliados para disseminação da Cultura de Segurança, adoção de Melhores Práticas e mitigação de problemas existentes
- Implementação de filtros de rotas no IX.br, que contribui para a melhora do cenário geral
- Estabelecimento de métricas e acompanhamento da efetividade das ações

Programa por uma Internet mais Segura Interação com Operadoras e Provedores

Atividades com Operadoras e Provedores com apoio das Associações

- Reuniões bilaterais
 - Correção de pontos de contato para notificação (Ação 3 MANRS) [3]
 - Validar a permissão para recebimento de e-mails com origem cert@cert.br
 - Acompanhamento da correção de serviços mal configurados que podem ser abusados para fazer parte de ataques DDoS (recomendação do CERT.br) [5]
 - Adoção de Boas Práticas de roteamento (MANRS) [3]
 - Medidas contra tráfego "spoofado" (Ação 2)
 - Implementação de filtros de anúncios BGP (Ação 1)
 - Publicação das políticas de roteamento em base de dados externa (IRR Internet Routing Registry e RPKI – Resource Public Key Infrastructure) [8]) (Ação 4)

 \mathbf{u}

Hardening de equipamentos e redes

Programa por uma Internet mais Segura Interação com Operadoras e Provedores

Atividades com Operadoras e Provedores com apoio das Associações

- Reuniões bilaterais
 - Correção de pontos de contato para notificação (Ação 3 MANRS) [3]
 - Validar a permissão para recebimento de e-mails com origem cert@cert.br
 - Acompanhamento da correção de serviços mal configurados que podem ser abusados para fazer parte de ataques DDoS (recomendação do CERT.br) [5]

Nome da Empresa	ASN	DNS	SNMP	NTP	SSDP	PORTIMAP	MEMCACHED	NETBIOS	дотр	CHARGEN	LDAP	MDNS	UBNT	WS-DICOVERY	TFTP	2019-10	2019-11	2019-12	2020-01	MT4145
																			#	
Empresa 1	ASN 1	17	4	1	10	2	0	2	0	0	0	0	0	0	0	512	49	37	36	0
Empresa 2	ASN 2	0	5	9	0	0	0	1	0	0	0	0	1	0	0	16	11	12	16	0
Empresa 3	ASN 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	0	0
																529	60	52	52	

Programa por uma Internet mais Segura Desenvolvimento do Programa

- Interação com as operadoras e provedores: redução de endereços IP mal configurados que permitem amplificação
 - Em mai/18: 575k grandes operadoras // 148k ISP e ASN corporativos (80/20)
 - Hoje: 103k grandes operadoras // 174k ISP e ASN corporativos (novos protocolos analisados – UBNT, WS-DISCOVERY, TFTP (37/63)
 - Redução total dos IPs notificados de 62% desde o início do Programa
 - Segmentação dos IPs notificados: 37% operadoras, 62% ISPs, 1% corporativos

 \mathbf{m}

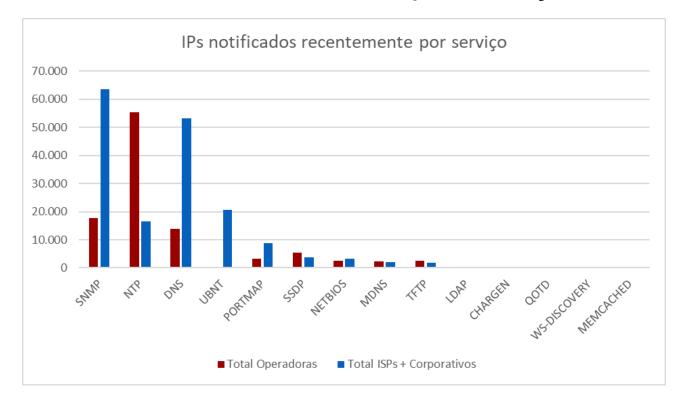
Segmentação dos ASNs (Brasil): 90,3% ISPs, 9,4% corporativos, 0,3% operadoras

Programa por uma Internet mais Segura Endereços IP e ASNs notificados pelo CERT.br

	DI	NS	SN	ІМР	N	ГР	SS	DP	Ubiquiti		
mês	ASNs	IPs	ASNs	IPs	ASNs	IPs	ASNs	IPs	ASNs	IPs	
2019-04	2.898	59.865	2.662	123.241	997	79.698	886	18.919	1.909	76.666	
2019-05	3.045	68.764	2.633	103.204	1.019	77.979	953	18.564	1.797	64.729	
2019-06	2.960	69.473	2.744	107.090	961	82.372	928	19.048	1.679	55.732	
2019-07	3.012	78.879	2.777	103.289	990	77.374	827	19.597	1.640	50.811	
2019-08	3.068	76.143	2.808	90.960	998	78.058	795	14.071	1.625	52.598	
2019-09	3.072	67.420	2.833	89.740	1.025	78.037	745	11.746	1.478	39.561	
2019-10	3.113	65.922	2.861	81.781	991	72.720	695	8.811	1.442	33.160	
2019-11	3.040	61.723	2.824	78.277	985	70.950	659	7.787	1.320	24.565	
2019-12	2.962	58.453	2.900	77.952	1.003	72.235	736	10.791	1.374	25.964	
2020-01	3.144	69.680	2.881	72.806	1.013	72.862	705	9.386	1.251	19.407	
2020-02	3.086	66.958	2.545	60.678	1.013	72.591	680	9.134	1.315	19.726	
2020-03	na	na	3.021	81.009	1.015	71.864	721	9.326	1.305	20.780	

O Brasil está em quinto lugar entre os endereços IPs com serviços SNMP mal configurados

սսսու


Fonte: https://snmpscan.shadowserver.org/ [12]

[&]quot;na" significa que o protocolo ainda não foi notificado no mês

Programa por uma Internet mais Segura Desenvolvimento do Programa

Endereços IP notificados recentemente por serviço mal configurado

Principais ofensores: ISPs e ASes corporativos → SNMP, DNS, UBNT e NTP

Grandes operadoras → NTP, SNMP e DNS

https://bcp.nic.br/i+seg

սսսմա

Programa por uma Internet mais Segura Página WEB

https://bcp.nic.br/i+seg

uuuuu

Programa por uma Internet mais Segura Referências

- [1] https://youtu.be/TIVrx3QoNU4?t=7586 Painel sobre Programa para uma Internet mais Segura, IX (PTT) Fórum 11, São Paulo, SP
- [2] https://bcp.nic.br/i+seg/ Programa por uma Internet mais segura
- [3] https://www.manrs.org/manrs/ MANRS for Network Operators
- [4] https://bcp.nic.br/antispoofing Boas Práticas de Antispoofing
- [5] https://bcp.nic.br/ddos#5 Recomendações para Melhorar o Cenário de Ataques Distribuídos de Negação de Serviço (DDoS)
- [6] https://bcp.nic.br/notificacoes Recomendações para Notificações de Incidentes de Segurança
- [7] https://www.caida.org/projects/spoofer/ Tool to access and report source address validation
- [8] https://registro.br/tecnologia/numeracao/rpki/ RPKI Descrição e passo a passo para implementação e ativação junto ao Registro.br
- [9] https://registro.br/tecnologia/numeracao/faq/rpki/ RPKI Perguntas frequentes
- [10] http://www.nic.br/videos/ver/como-resolver-os-problemas-de-seguranca-da-internet-e-do-seu-provedor-ou-sistema-autonomo/
- [11] https://www.m3aawg.org/sites/default/files/lac-bcop-1-m3aawg-v1-portuguese-final.pdf Documento conjunto LACNOG-M3AAWG: Melhores Práticas Operacionais Atuais sobre Requisitos Mínimos de Segurança para Aquisição de Equipamentos para Conexão de Assinante (CPE) LAC-BCOP-1
- [12] https://www.shadowserver.org/news/the-scannings-will-continue-until-the-internet-improves/ Artigo do ShadowServer sobre os testes de amplificadores
- [13] https://cert.br/docs/palestras/certbr-fiesp-deinfra-2019.pdf Apresentação do CERT.br na Reunião de Telecomunicações do DEINFRA FIESP 23 de outubro de 2019 São Paulo/SP

uuuuu

Obrigado

https://bcp.nic.br/i+seg

20 de março de 2020

nichr egibr

www.nic.br | www.cgi.br